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Abstract

In the capacitated truck-and-trailer routing problem (CTTRP), a limited fleet of capacitated trucks and trail-

ers is available at a depot to serve a set of customers. Some of the customers cannot be reached by a truck

pulling a trailer. Trucks are thus allowed to detach and park their trailer en route, then visit some customers

without it, and then return back to pick up their trailer and continue their trip. In this paper, we propose

a two-commodity flow formulation for the CTTRP, which uses two sets of flow variables that model the

flow of goods carried by trucks pulling a trailer and by trucks alone, respectively. We describe some valid

inequalities for strengthening the formulation and develop a branch-and-cut algorithm for solving it. In

our computational experiments, we consider both the CTTRP and its special case in which a single capaci-

tated truck pulling an uncapacitated trailer is available. We report results on instances derived from known

benchmark sets featuring up to 30 customers. The results show that our branch-and-cut solves 30-customer

instances with either a single vehicle or loose capacity constraints with very high success rate. Of the more

tightly capacitated 30-customer instances, about two thirds can be solved.

Keywords: vehicle routing, truck and trailer, two-commodity formulation, branch-and-cut



1 Introduction

Truck-and-trailer routing problems (TTRPs) form a class of vehicle-routing problems (VRPs) that are char-

acterized by the availability of non-autonomous trailers, which must be pulled by a truck. A composite

vehicle consisting of a truck pulling a trailer permits to increase the load capacity but is subject to accessi-

bility restrictions for composite vehicles at some of the customers, e.g., because the customers are located in

a mountain area or in a city center with bans on large vehicles. To reflect such restrictions, TTRPs assume

that a subset of the customers can only be served by a truck alone (so-called truck customers) whereas the

remaining ones can be served by both a composite vehicle or by a truck alone (so-called vehicle customers).

A number of real-world applications have been reported for TTRPs, like, e.g., milk collection (Caramia

and Guerriero 2010a, Pasha et al. 2014), fuel oil delivery to private households (Drexl 2011), distribution

of goods (Semet and Taillard 1993, Gerdessen 1996), postal mail delivery (Bodin and Levy 2000, Bode

2013), and container movement (Tan et al. 2006). Cuda et al. (2015) provide an up-to-date survey of TTRPs

and review the solution methods proposed in the literature. TTRPs have also been discussed in surveys on

location-routing problems (see, e.g., Nagy and Salhi 2007, Prodhon and Prins 2014).

In this paper, we consider the capacitated TTRP (CTTRP) introduced by Chao (2002), in which a limited

number of capacitated trucks and a limited number of capacitated trailers are available at a central depot.

The composite vehicles are allowed to park their trailer at any vehicle customer and to transfer load between

between the truck and the trailer. From there, it is possible to perform a truck subtour serving a subset of

customers, possibly inaccessible for trailers, and then return to the trailer and continue the trip. The objective

is to minimize the transportation cost for serving all customers with a compatible vehicle of the given fleet

while respecting the vehicle capacities.

The CTTRP is the most studied problem in the class of TTRPs, and several heuristics are available in

the literature (see Chao 2002, Scheuerer 2006, Lin et al. 2009, Caramia and Guerriero 2010b, Villegas et al.

2011, 2013), of which the paper by Villegas et al. (2013) currently defines the state-of-the-art. To the best of

our knowledge, no exact solution method for the CTTRP has yet been proposed in the literature, however, a

few exact methods have been introduced for variants of the CTTRP and are described in the following.

Drexl (2011) study the generalized TTRP as a unified modeling framework for TTRPs with a fixed

truck-trailer assignment. The problem considers additional transhipment locations at which trailers can be

parked and load transfers take place, time windows at both customer and transhipment locations, and a

heterogeneous fleet of vehicles with different fixed and distance-dependent costs. The authors devise an exact

branch-and-price algorithm and several heuristic variants. The exact is able to consistently solve instances

with up to 10 truck customer, 10 vehicle customers and 10 transshipment locations. Drexl (2014) study

the VRP with trailers and transshipments, in which the the fixed truck-trailer assignment of the generalized

TTRP is abandoned, i.e., a trailer can now be pulled by any compatible truck on the parts of its route, and

any truck can perform a load transfer to any trailer. In addition, load dependent transfer times between trucks

and trailers are considered. For this problem, the author proposes a branch-and-cut algorithm based on two

compact formulations which build on a network representation of the problem involving 2 + 8n vertices,

with n being the number of customers. Both formulations require the use of three-index variables to model

the vehicle tours. The largest instances that are solved to optimality contain 8 customers, 8 transshipment

locations, and 8 vehicles.

Parragh and Cordeau (2015) and Rothenbächer et al. (2016) both consider the CTTRP with time windows

and develop column-generation-based solution methods based on a set-partitioning formulation. They report
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optimal solutions to instances with up to 100 customers if time windows are tight. Rothenbächer et al.

(2016) also consider two real-world extensions: (i) load-dependent transfer times, and (ii) the option to

collect double the amount at a customer every second day. The proposed method was also used to address

the generalized TTRP instances of (Drexl 2011). Here, the number of istances that can be solved increases

significantly. Finally, Belenguer et al. (2016) propose a branch-and-cut for the TTRP with satellite depots,

in which a set of truck customers have to be served, and the trailer can be parked and load transfer can take

place at a set of satellite depots. Thus, this variant is quite similar to two-echelon VRPs. The largest instance

that the authors can solve features 100 customers and 10 satellite depots.

In this paper, we propose a new mathematical formulation for the CTTRP which is defined over a network

with 2+n+nc vertices, where nc denotes the number of vehicle customer locations, and n is the total number

of customers. We computationally assess the effectiveness of the new formulation by developing a branch-

and-cut algorithm for solving it. We report results on a set of 96 instances with different characteristics

featuring up to 30 customers, which are derived from the CTTRP benchmark sets of Chao (2002) and Lin

et al. (2010). In the numerical experiments, we also consider a special case of the CTTRP that we call single-

vehicle CTTRP, in which only one vehicle consisting of a capacitated truck pulling an uncapacitated trailer

is available.

The remainder of this paper is organized as follows. In Section 2, we describe the CTTRP and introduce

the main notation used in the paper. Section 3 presents the CTTRP formulation, and Section 4 introduces

some classes of valid inequalities for strengthening its Linear Programming (LP) relaxation. In Section 5, we

describe a branch-and-cut algorithm based on the new formulation and detail the separation procedures that

it uses to detect violated inequalities. Section 6 provides a computational evaluation of our branch-and-cut

algorithm, and some conclusions are drawn in Section 7.

2 Problem description and notation

The CTTRP can be defined on a complete undirected graph G = (V0, E) with vertex set V0 = {0, ..., n}
and edge set E = {{i, j}, i ∈ V0, j ∈ V0, i < j}. The customer set V = V0 \ {0} is partitioned into

the two subsets V c and V t: vertices in V c correspond to nc vehicle customers, vertices in V t to nt truck

customers. Each customer i ∈ V has a nonnegative demand qi. Vertex 0 represents the depot at which a fleet

of mt trucks with capacity Qt and mc trailers with capacity Qc are stationed. Trailers are non-autonomous

vehicles and must be pulled by a truck. Each truck can either travel alone or pull at most one trailer, in

which case it is called a composite vehicle with capacity Qt +Qc. Each edge {i, j} ∈ E is associated with

a cost cij which represents the cost for traveling directly from i to j (or from j to i) with a truck or with a

composite vehicle. The goal of the CTTRP is to supply each customer i from the depot with a load qi, using

the available vehicles without exceeding their capacity and minimizing the transportation costs.

The trip of a vehicle starting from the depot, visiting a subset of customers, and finally returning back

to the depot is called a route. The total load of the customers visited by a route cannot exceed the capacity

of the corresponding vehicle (Qt in case of a truck route, i.e., if the vehicle is a truck, or Qt + Qc in case

of a vehicle route, i.e., if the vehicle is a composite vehicle). A composite vehicle is allowed to detach its

trailer during its vehicle route after visiting a vehicle customer k, then continue to visit a subset of customers

(either truck customers, or vehicle customers, or both) with the truck alone, and then return back to vertex k

to reattach the trailer before continuing its route. A route segment of a vehicle route which is traversed by the

truck alone and starts and ends at a vehicle customer k is called truck subtour rooted at k. A vertex k ∈ V c
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which is the starting point of a truck subtour is called the parking place of that subtour. A truck subtour must

correspond to a simple cycle in G, and the sum of loads of the customers on the subtour must not exceed the

truck capacity Qt.

Load transfers between truck and trailers are allowed, and thus, a vehicle route can include multiple

subtours possibly rooted at the same parking place k. In principle, one could think of a truck route as a

truck subtour rooted at vertex 0, however, it is necessary to distinguish between the two because the number

of truck routes is limited by the number of available trucks whereas the number of truck subtours rooted at

vertex 0 is not. However, the latter is restricted by the capacity of the composite vehicle whose truck is used

to perform the truck subtours. This assumption seems artifical: In practice, if the depot is a parking place

and no other constraints (e.g., time constraints) are considered, it stands to reason that a composite vehicle

will always reload its truck upon returning to the depot. Thus, the load of the truck subtours rooted at the

depot will not contribute to the load of any vehicle route. However, this is equivalent to say that the number

of trucks is unlimited.

For these reasons, we assume that the depot cannot be a parking place, so that only truck routes can start

from the depot, and the total number of truck routes starting from the depot is at most mt. To simplify the

exposition, we use the term “truck subtour” also to denote a truck route, and we use the respective parking

place to distinguish truck routes from truck subtours, i.e., a truck route is a truck subtour rooted at 0.

3 Two-commodity flow formulation

This section describes a mathematical formulation of the CTTRP (Section 3.2), which is an extension of the

two-commodity flow formulation of the CVRP (Baldacci et al. 2004). The formulation uses an extended

graph (Section 3.1).

3.1 Extended graph G

The extended graph G = (V, E) is defined on an extended vertex set V that consists of (i) the vertex set

V0, (ii) a vertex 0′, which is a copy of the depot 0 and represents the end vertex of all routes, and (iii)

one copy i′ of each vertex i ∈ V c, which represents the end vertex of any truck subtour rooted at i. To

simplify the notation, for any set S ⊆ V \ {0, n+ 1}, we denote by S0 = S ∪ {0}, S0′ = S ∪ {0′}, and by

S0,0′ = S ∪ {0, 0′}. The sum of demands of the customers in S is denoted by q(S), i.e., q(S) =
∑

i∈S qi.

The edge set of the extended graph is defined as follows:

E = E ∪ {{i, j′} : i ∈ V, j ∈ V c
0 , i 6= j}.

Moreover, we denote by Ec the subset of edges that are incident with either two vehicle customers or with

a vehicle customer and the depot:

Ec = {{i, j} ∈ E : i ∈ V c
0 , j ∈ V c} ∪ {{i, 0′} : i ∈ V c

0 }.

With each edge {i, j} ∈ E is associated the cost cij . For the other edges, we have (i) c00′ = 0, (ii) ci0′ = c0i,

∀i ∈ V , and (iii) cij′ = cij , ∀i ∈ V , ∀j ∈ V c, i 6= j. Finally, we use the notation δ(S) to index the subset of

edges in E that cross the vertex subset S ⊆ V , and E(S, T ) to index the subset of edges having one endpoint
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in S and the other in T for any two vertex subsets S, T ⊆ V . In case S is a singleton {i}, we write δ(i) in

place of δ({i}).

3.2 Mathematical formulation

The idea of two-commodity flow formulations is to model the flow of goods carried by a vehicle when

traveling an edge {i, j} by using two flow variables fij and fji. The first represents the load of the

vehicle when traversing the edge and the latter the empty space. In our formulation, we use two distinct

sets of flow variables to model the flow of goods and of empty space of the vehicle routes (called forward

and backward f -flows, respectively) and those of the truck subtours (which we call forward and backward

g-flows, respectively). More precisely, we use the following variables:

• Variables xij , ∀{i, j} ∈ Ec, taking value 1 if a vehicle route traverses edge {i, j} ∈ Ec, 0 otherwise

• Variables zij , ∀{i, j} ∈ E , taking value 1 if a truck subtour traverses edge {i, j} ∈ E , 0 otherwise

• Variables fij and fji, ∀{i, j} ∈ Ec, representing the total load and empty space, respectively, on a

composite vehicle traversing edge {i, j} ∈ Ec

• Variables gij and gji, ∀{i, j} ∈ E , representing the total load and empty space, respectively, on a truck

traversing edge {i, j} ∈ E

• Variables hi representing the number of truck subtours rooted at i ∈ V c
0 . These variables are redundant,

but we include them in the formulation to improve its readability.

An example of a feasible CTTRP solution on the extended graph G is shown in Figure 1. In this solution,

two trucks of capacity 40 and two trailers of capacity 30 are used. In the figure, the start depot 0 and its

copy 0′ are represented as a black and a white square, respectively. Each vehicle customer i is represented

as a black circle, and its copy i′ as a white circle beside it. Truck customers are represented as triangles.

The number in brackets on each edge displays the forward f -flow or g-flow on the edge (if non-zero), i.e.,

the load of the composite vehicle or the truck traversing that edge. The two numbers beside each vertex are,

from left to right, the customer load and the customer number (in bold), respectively. Note that copy vertices

(white circles) have no associated load.

The CTTRP can be modeled as mixed integer linear program as follows:

min
∑
{i,j}∈Ec

cijxij +
∑
{i,j}∈E

cijzij

s.t. ∑
{i,j}∈δ(i)∩Ec

(fji − fij) +
∑

{i,j}∈δ(i)

(gji − gij) = 2qi +Qthi, ∀i ∈ V c (1)

∑
j∈V c

f0j +
∑
j∈V

g0j = q(V ) (2)

∑
j∈V c

0′

fj0 +
∑
j∈V0′

gj0 = mcQc +mtQt − q(V ) (3)

∑
j∈V c

0

f0′j +
∑
j∈V0

g0′j = mcQc +mtQt (4)
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Figure 1: Example of a CTTRP solution in the extended graph.

fij + fji = (Qt +Qc)xij , ∀{i, j} ∈ Ec \ {0, 0′} (5)∑
{i,j}∈δ(i)

(gji − gij) = 2qi, ∀i ∈ V t (6)

gij + gji = Qtzij , ∀{i, j} ∈ E \ {0, 0′} (7)∑
j∈V

gi′j = hiQt, ∀i ∈ V c
0 (8)

∑
{i,j}∈δ(i)∩Ec

xij +
∑

{i,j}∈δ(i)

zij = 2 + hi, ∀i ∈ V c (9)

∑
{i,j}∈δ(i)

zij = 2, ∀i ∈ V t (10)

∑
j∈V c

0′

x0j + h0 ≤ mt (11)

∑
j∈V c

0′

x0j ≤ mc (12)

∑
{i,j}∈E(Sk:Vk′\Sk)

zij − hk ≥ 0, ∀S ⊆ V, ∀k ∈ V c (13)

∑
{j,i′}∈δ(i′)\{0,i′}

zji′ = hi, ∀i ∈ V c
0 , (14)

xij ∈ {0, 1}, ∀{i, j} ∈ Ec (15)

fij ≥ 0, fji ≥ 0, ∀{i, j} ∈ Ec (16)

zij ∈ {0, 1}, ∀{i, j} ∈ E (17)

gij ≥ 0, gji ≥ 0, ∀{i, j} ∈ E (18)
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The objective function minimizes the total travel costs of the routes. Constraints (1)–(5), (7), (8) , (16),

and (18) define a feasible forward and backward f -flow and g-flow . More precisely, constraints (1) define

the total inflow minus the outflow at each vehicle customer vertex i ∈ V c. If i is not a parking place, hi
must be zero, and the g-flow through i must be zero as well. Thus, in this case, constraints (1) state that the

f -inflow minus the f -outflow must equal twice the demand of i. If i is a parking place of one or several truck

subtours serving the customer subset S, then the f -inflow minus the f -outflow at i must equal 2qi + 2q(S),

i.e., twice the total load delivered to i and to its truck subtours by the composite vehicle. At the same time,

the g-inflow minus the g-outflow of i must equal hiQt − 2q(S) because with respect to the truck subtours

modeled by the g-flow, i plays the role of a depot for hi subtours serving the customer set S. Equation (2)

states that the total outflow from the start depot 0 must equal the total customer demand. Equation (3)

imposes that the total inflow at the start depot 0 must equal the unused capacity of the entire vehicle fleet.

Analogously, equation (4) states that the total outflow from the end depot 0′ must equal the total capacity of

the vehicle fleet. Equations (5) model the capacity constraints of the composite vehicles by imposing that

the sum of forward and backward f -flows through each edge {i, j} must either be equal to the total vehicle

capacity if the edge is traversed by a composite vehicle, or be zero otherwise. Equations (6) and (7) are

similar to equations (1) and (5), respectively. They model g-flow conservation and the capacity constraints

of the trucks.

Equations (8) impose for each vehicle customer i that the total g-outflow from the end vertex i′ of all the

truck subtours rooted at i must equal the total capacity of those subtours (i.e., hiQt). Together with (1) and

(13), these constraints establish that each of the hi truck subtours rooted at i has a forward g-flow from i to i′

modeling the load of the truck, and a backward g-flow from i′ to i modeling its empty space. Constraints (9)

and (10) define the degree of each customer vertex, and constraints (11) and (12) impose an upper bound on

the number of routes in a solution. The subtour connectivity constraints (13) forbid truck subtours to end at

a different vertex than their parking place, and are described in more detail in Section 4. Finally, constraints

(14) fix the value of the redundant variables hi, and (15)–(18) define the domains of the variables.

4 Valid inequalities

In this section, we describe some classes of valid inequalities that we use to improve the LP relaxation of

the formulation presented in Section 3. The separation procedures for solving the corresponding separation

problem and a branch-and-cut algorithm based on the formulation strengthened by the described inequalities

are detailed in Section 5.

4.1 Subtour connectivity constraints

The subtour connectivity constraints (13) are an adaptation of generalized subtour elimination constraints

(see, e.g, Fischetti et al. 1995). They are used to eliminate solutions where the variables zij define a path

starting from a vehicle customer i but ending at a different vertex than i′. To see that constraints (13) are

valid, consider a vehicle customer k ∈ V c. If k is the parking place of hk truck subtours, then the variables

zij must define hk paths that all start at k, traverse a subset of vertices S ⊆ V \ {k}, and end at vertex k′. A

necessary and sufficient condition for the existence of such paths is that for any vertex subset S ⊆ V which

contains k, there are at least hk edges {i, j} connecting S with (V \ S) ∪ {k′} such that zij = 1.
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4.2 Rounded capacity constraints

Rounded capacity constraints are well-known inequalities for the capacitated VRP (CVRP, see Naddef and

Rinaldi 2002). They impose a lower bound on the number of edges crossing each customer subset in any

feasible solution. For any vertex subset S ⊆ V , let r(S) =
⌈

q(S)
Qc+Qt

⌉
, and t(S) =

⌈
q(S)
Qt

⌉
be lower bounds

on the number of composite vehicles and trucks, respectively, which are needed to supply the customers in

S. Then, we define the following two types of rounded capacity constraints:

Vehicle capacity cuts∑
{i,j}∈δ(S)

zij +
∑

{i,j}∈δ(S)∩Ec

xij ≥ 2r(S), ∀S ⊆ V (19)

Truck capacity cuts∑
{i,j}∈δ(S)

zij ≥ 2t(S), ∀S ⊆ V t (20)

It is worth noting that vehicle capacity cuts (19) can be strengthened in case r(S) = 1 but t(S) ≥ 2. Then,

a single truck subtour is not enough to serve all customers in S. Therefore if S is not crossed by any vehicle

route (i.e., if
∑
{i,j}∈δ(S)∩Ec xij = 0), it must be crossed by at least two truck subtours (i.e.,

∑
{i,j}∈δ(S) zij

must equal at least four). Following this observation, (19) can be improved to obtain the following lifted

vehicle capacity cuts:

∑
{i,j}∈δ(S)

1

t(S)
zij +

∑
{i,j}∈δ(S)∩Ec

xij ≥ 2, ∀S ⊆ V : r(S) = 1 and t(S) ≥ 2 (21)

To see that (21) are valid, consider any S ⊆ V such that r(S) = 1 and t(S) ≥ 2. In any feasible solution

there are two cases: (i) at least r(S) = 1 vehicle routes cross S, in which case inequality (21) is satisfied,

and (ii) no vehicle route crosses S, in which case at least t(S) truck subtours must cross S, and thus the left

hand side of (21) is at least 1
t(S)2t(S) ≥ 2.

4.3 Co-circuit inequalities

Co-circuit inequalities are proposed in (Barahona and Grötschel 1986). They were adapted to the rural

postman problem by Ghiani and Laporte (2000) and later to the TTRP with satellite depots by Belenguer

et al. (2016). In our context, they are based on the following observation. Recall that all the vehicle routes

and truck subtours are represented as paths from a starting vertex i to an ending vertex i′ in the extended

graph G, and all edges {i, j} ∈ E can be traversed at most once in G. For any vertex subset S ⊆ V0,

let S′ be the vertex set obtained by adding to S all the copy vertices of the vehicle customers in S, i.e.,

S′ = S ∪{i′ ∈ V : i ∈ S}, and let S = {S′ ⊆ V : S ⊆ V }. In words, the set S collects all the vertex subsets

of V such that for each vertex i ∈ V c
0 either i, i′ ∈ S, or i, i′ 6∈ S.

Consider a set S′ ∈ S and let F ⊆ δ(S′) be a subset of edges crossing the set S′. If |F | is odd, then the

number of edges crossing S′ in any feasible solution must be even. Indeed, any vehicle route or truck route

entering S′ must also leave it in order to finally reach the end depot. Moreover, any truck subtour departing

from a vertex i ∈ S must return back to i′ which, by definition of S′, also belongs to S′. Thus, because

each edge in F can be traversed at most once, if all the |F | edges in F are traversed, then at least one edge
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in δ(S′) \ F must also be traversed because |F | is odd. Therefore, the following inequalities, which we call

truck co-circuit inequalities, are valid for the CTTRP∑
{i,j}∈δ(S′)\F

zij ≥
∑
{i,j}∈F

zij − |F |+ 1, ∀S′ ∈ S, ∀F ⊆ δ(S′), |F | odd. (22)

Similarly, let Sc = {S′ ⊆ V : S ⊆ V c
0 }. Then, the following vehicle co-circuit inequalities are valid∑

{i,j}∈(δ(S′)∩Ec)\F

xij ≥
∑
{i,j}∈F

xij − |F |+ 1, ∀S′ ∈ Sc, ∀F ⊆ δ(S′) ∩ Ec, |F | odd. (23)

5 Branch-and-cut algorithm and separation procedures

To assess the practical usefulness of the formulation presented in Section 3, we have implemented a branch-

and-cut algorithm for solving it. We first solve the LP relaxation of formulation (1)–(18) strengthened by the

inequalities described in Section 4 by means of a cutting plane algorithm. At this stage, the inequalities are

separated in the order (13), (20), (19), (22), and (23). At most 20 violated cuts are added in each iteration.

After each call to the separation algorithm, the problem is re-optimized.

The formulation resulting from the addition of the cuts found by the cutting plane algorithm is then solved

by a branch-and-cut using the mixed integer linear programming solver IBM ILOG Cplex with default pa-

rameters settings. During preliminary experiments, we found that it is convenient to disable the separation of

inequalities (23), (22), (19), (20), and (21) during the branch-and-cut phase. Therefore, only inequalities (13)

(in addition to Cplex cuts) are separated by the branch-and-cut. Separation routines for detecting violated

inequalities (13) are provided through the callback interface. In the remainder of this section, we describe

how violated inequalities are separated by our algorithm.

Co-circuit inequalities We separate co-circuit inequalities (23) and (22) by means of a procedure similar

to that used by Belenguer et al. (2016), which is based on an algorithm of Letchford et al. (2008) for sepa-

rating blossom inequalities. We only describe the procedure for the separation of inequalities (22) because

the method for separating inequalities (23) is very similar. The inequalities are separated in the following

equivalent form:∑
{i,j}∈δ(S′)\F

zij +
∑
{i,j}∈F

(1− zij) ≥ 1, ∀S′ ∈ S, ∀F ⊆ δ(S′), |F | odd (24)

The separation procedure uses the following observation. Once given a set S′ ∈ S, a set FS′ ⊆ δ(S′) which

minimizes the left hand side (lhs) of (24) with respect to a vector z ∈ {0, 1}|E| is obtained simply by taking

all edges {i, j} ∈ δ(S′) with zij > 0.5. At this point, if |FS′ | is even, then it suffices to either add or remove

from FS′ the edge {i, j} yielding the smallest increase in the lhs of (24) to obtain the most violated constraint

for the given S′. Following this observation the separation happens into two stages. First the min-cut tree

of G (Gomory and Hu 1961) with respect to edge weights uij = min{zij , 1 − zij} is constructed. For each

cut and corresponding vertex set S′ obtained in this way, the weight of the cut equals the smallest lhs of an

inequality (24) defined by S′ and the corresponding FS′ (where |FS′ | is not necessarily odd). Second, the

observation above is used to construct F with |F | odd given FS′ and to obtain a valid inequality defined by

S and F . In our case, however, we have to impose the additional restriction S′ ∈ S. To do this, recall that

each S′ ∈ S is obtained from a set S ⊆ V0 by adding to it the copy vertices of all vehicle customers (and
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depot) in S. Thus we first compute the reduced graphG = (V0, E) obtained from G by replacing each vertex

pair i, i′, such that i ∈ V c
0 with the single vertex i, and by removing any edge {i, j′} such that j ∈ V c

0 . The

weight of each edge {i, j} ∈ E is then set as follows:

uij = min{(1− zij) + (1− zji′) + (1− zij′), zij + (1− zji′) + (1− zij′), zij + zji′ + (1− zij′), zij + (1−
zji′) + zij′ , (1− zij) + zji′ + zij′ , zij + zji′ + zij′} if i, j ∈ V c

0 ,

uij = min{(1− zij) + (1− zij′), zij + zij′ , (1− zij) + zij′ , zij + (1− zij′)} if i ∈ V t, and j ∈ V c
0 ,

uij = min{(1− zij) + (1− zji′), zij + zji′ , (1− zij) + zji′ , zij + (1− zji′)} if j ∈ V t, and i ∈ V c
0 .

Indeed, consider for example an edge {i, j} ∈ E with i, j ∈ V c
0 . This edge corresponds to the three edges

{i, j}, {i, j′}, {j, i′} of G which cross a set S′ ∈ S if and only if {i, j} crosses S. Thus, the contribution of

the three variables zij , zij′ and zji′ to the lhs of an inequality (24) defined by a pair (S′, FS′) is either uij as

defined above if {i, j} crosses S, or zero otherwise. A similar reasoning applies to edges {i, j} with either

i ∈ V c
0 or j ∈ V c

0 . Thus, we compute a min-cut tree with respect to weights uij in G, and for each resulting

cut with weight less than 1 defined by a set S ⊆ V0, we construct S′ and |FS′ |, derive a corresponding valid

inequality (24), and check if it is violated.

Subtour connectivity constraints Inequalities (13) can be separated in polynomial time as follows. Given

a solution (x, z,h), construct the support graph Gz = (Vz, Ez) induced by z, where Vz ⊆ V \ {0, 0′}, and

the edge set Ez contains all edges {i, j} ∈ E , i, j 6= 0, 0′, with zij > 0. Associate a capacity wij = zij with

each edge {i, j} ∈ Ez. Note that no inequality (13) defined by a vehicle customer k with hk = 0 can be be

violated. Consider a vertex k ∈ V c such that hk > 0 and let Gkz = (Vkz , Ekz ) be the connected component of

Gz which contains vertex k.

An inequality (13) defined by k ∈ V c is violated if and only if the maximum flow from k to k′ in Gkz is

less than hk. Indeed, if that is the case, then the minimum s, t-cut (S, S̄) in Gkz with s = k and t = k′ has a

weight
∑
{i,j}∈E(S,S̄) zij less than hk, and thus the inequality (13) defined by S and k is violated. Obviously,

if hk > 0 but k′ 6∈ Vkz , then there is no need to compute a minimum cut as k and S = Vkz clearly define a

violated inequality (13).

Rounded capacity constraints The separation of inequalities (20) is equivalent to the separation of clas-

sical rounded capacity constraints for a CVRP instance, in which the vehicles have a capacity of Qt. Given

a solution (x, z,h), we work with a reduced graph G having vertex set V t
0 and only containing edges

{i, j} ∈ E with i, j ∈ V t
0 . The edges ofG are associated with weights x∗ij computed as x∗ij = zij if i, j ∈ V t,

and x∗0i = z0i +
∑

j∈V c
0
zij′ for all i ∈ V t. We then use the separation package CVRPSEP (Lysgaard 2004)

on the support graph induced onG by x∗. Inequalities (19) are not separated in the same way as (20) because

they are defined with respect to both x and z, and thus, the degree of a vertex in the resulting support graph

can be greater than two. Instead, we use the tabu search of Augerat et al. (1998), which starts with a vertex

set S containing a single vertex i ∈ V and iteratively adds or removes vertices to/from S to obtain a new set

S′. For each set S, the algorithm computes the slack σ(S) = 2r(S)−
∑
{i,j}∈δ(S) zij −

∑
{i,j}∈δ(S)∩Ec xij

of the corresponding inequality (19) (or the slack of the corresponding lifted inequality (21) if r(S) = 1 and

t(S) ≥ 2) and returns the set S yielding the largest value σ(S).
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6 Computational experiments

This section describes the computational evaluation of the branch-and-cut algorithm described above. The

algorithm was implemented in C and compiled with Visual Studio 2012 64-bit. All computational experi-

ments were run on an Intel Core i7-3770 (CPU @ 3.40 GHz) with 16 GB of RAM. Cplex 12.7 was used

as the MILP solver. The description of the benchmark instances is given in Section 6.1, the results on the

instances are discussed in Section 6.2.

6.1 Description of the test instances

We derive four sets of instances by using two CTTRP benchmarks from the literature: (i) the Chao set

containing 21 instances with up to 150 customers (Chao 2002), and (ii) the Tai set containing 36 instances

with up to 150 customers (Lin et al. 2010). Both sets have originally been created from benchmark sets

for the CVRP (Christofides et al. 1979, Rochat and Taillard 1995). For each CVRP instance, three CTTRP

instances were obtained by designating 25%, 50% and 75% of the customers as truck customers and the

remaining ones as vehicle customers. Instances of set Chao are characterized by uniformly distributed

customers whereas in instances of set Tai customers are clustered.

Due to their size, the original Chao and Tai instances are not suitable for our branch-and-cut algorithm.

Therefore, we create two new sets (called Chao30 and Tai30 ) by extracting 30 customers from the original

instances. More precisely, we use instances 1–12 in Chao and instances 1–12 in Tai as base instances. To

generate the first instance, we take the first nt = d0.25 · 30e truck customers and the first 30 − nt vehicle

customers from Chao (Tai ) instance 1. In analogous fashion, we take the first nt = d0.5 · 30e to generate

the second instance from Chao (Tai ) instance 2, and nt = d0.75 · 30e to generate the third instance from

Chao (Tai ) instance 3. This is repeated with instances 4–12 of the original Chao and Tai set.

Both sets Chao30 and Tai30 consist of three subsets called A, B, and C. Instances of type A are obtained

by setting the number of available vehicles and the vehicle capacities so as to keep a similar ratio between

total customer demand q(V ) and total capacity mtQt + mcQc as in the original Chao and Tai instances.

Instances of type B are derived from the type A instances by increasing the capacity of the vehicles. Instances

of type C are single-vehicle CTTRP instances, in which a single truck of capacity Qt together with a trailer

of capacity Qc = q(V ) is available.

Finally, we create two additional sets of smaller instances called Chao25 and Tai25 by extracting the first

25 customers from the type A instances of sets Chao30 and Tai30 . The generated instances are available

at the URL: https://www.dropbox.com/s/hxzuge7l62bye5r/CTTRP_DATA.zip?dl=0. In

our computational experiments, the cost cij of each edge {i, j} is set equal to b10000Euc(i,j)c
10000 whereEuc(i, j)

denotes the Euclidean distance between i and j.

6.2 Computational results

Tables 1–4 report the results obtained by the branch-and-cut algorithm on the new instances within a time

limit of 2 hours per instance. The first eight columns of these tables summarize the characteristics of the

instances. They report an instance identifier (column Inst.), the number of vehicle customers (column nc),

the number of available trailers (column mc) and their capacity (column Qc), the number of available trucks

(column mt) and their capacity (columns Qt), and the percentage ratio of customer demand and available

vehicle capacity %q = 100 ·q(V )/(mcQc+mtQt) (column %q). In the tables reporting results for instances
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of type C, the columns mc, mt and Qc are not reported, and column %q is replaced by column qt reporting

the total demand of the truck customers.

In all tables, column ub reports the best upper bound found by the branch-and-cut algorithm. Columns

%lb0, %lb+, %lbc, and %lb∗ report the percentage ratio of the initial lower bound lb0 (i.e., the optimal cost

of the LP relaxation of the formulation without additional cuts), the percentage ratio of the lower bound lb+
obtained after adding the cuts described in Section 4, the percentage ratio of the lower bound lbc obtained by

Cplex at the root node, and the percentage ratio of the final lower bound lb∗ obtained by Cplex at termination.

The percentage ratio of a lower bound lb is computed as 100 · lb/ub. Columns scc, rcc, and cci report the

total number of subtour connectivity constraints (13), rounded capacity constraints (19, 20, 21), and co-

circuit inequalities (22, 23) separated by the branch-and-cut algorithm. Finally, column t reports the total

computing time (in seconds).

Tables 1–4 show that our branch-and-cut algorithm can solve all but one instance with 25 customers, and

most of those with 30 customers of type B (21 out of 24). Instances of type A seem more difficult, and

seven out of 24 are not solved within the time limit. This is probably due to the tighter capacity constraints.

Finally, all the single-vehicle CTTRP instances, i.e., those of type C, are solved to optimality within about

one hour of CPU time (and all but one even within 30 minutes). Overall, the algorithm solves 85 out of the

96 instances that we investigated.

The tables show that the lower bound lb0 provided by the LP relaxation of our formulation can be rather

weak. Considering only the instances with 25 customers, the percentage ratio of lb0 can already be as low as

∼ 72%, and on the instances of type A (for all of which an optimal solution is known), the percentage ratio of

lb0 is on average 85.15%. However, the addition of rounded capacity constraints and co-circuit inequalities

improves lb0 significantly, especially on instances of type B and C. The addition of Cplex cuts improves

further the lower bound at the root node. More precisely, considering the instances with 30 customers,

the overall improvement in the root lower bound for instances Chao30 (Tai30 ) is on average about 4.6%

(13%) for type A instances, 5.8% (13.2%) for type B instances, and 6.3% (30.7%) for type C instances. It

is interesting to note that for instances of sets Tai25 and Tai30 , the valid inequalities appear significantly

more effective. This is possibly due to the clustered structure of these instances, which may make the rounded

capacity constraints more effective. On the other hand, lb0 is weaker for these instances and they also appear

more difficult for the branch-and-cut. Indeed, the only unsolved instance with 25 customers, as well as eight

out of the ten unsolved instances with 30 customers all belong to the sets Tai25 and Tai30 . Finally, recall

that the instances of type C involve a single vehicle and no capacity constraint for the composite vehicle.

These instances appear easier for the branch-and-cut, likely due to the structure of the single vehicle problem

which is less constrained than the CTTRP.

7 Conclusions

We introduce a new mathematical formulation for the capacitated truck-and-trailer routing problem (CT-

TRP), which is an extension of the two-commodity flow formulation for the capacitated vehicle-routing

problem, and we describe some valid inequalities for strengthening it. We develop a branch-and-cut algo-

rithm based on the new formulation and evaluate it computationally on a set of CTTRP instances with up

to 30 customers and diverse characteristics. Our computational results suggest that the branch-and-cut al-

gorithm can solve instances with up to 30 customers and is particularly effective for instances with loose

capacity constraints, or featuring a single composite vehicle with an uncapacitated trailer.
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Table 1: Results on the instances of set Chao25

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 19 2 100 3 100 84.40 340.6 84.27 89.57 90.30 100.0 6 22 87 35
2 13 2 100 3 100 84.80 366.3 83.70 87.21 89.87 100.0 28 8 44 26
3 6 2 100 3 100 84.20 373.2 84.18 85.48 92.36 100.0 77 13 23 33
4 19 2 100 4 100 82.17 355.6 85.43 89.80 90.07 100.0 18 66 68 163
5 12 2 100 4 100 86.17 378.1 85.49 87.84 90.83 100.0 13 24 40 18
6 6 2 100 4 100 80.83 401.0 84.31 85.69 90.97 100.0 28 5 21 31
7 18 2 100 2 150 68.20 324.6 87.31 93.00 93.07 100.0 2 26 46 15
8 12 2 150 1 150 76.67 353.6 85.45 88.92 91.22 100.0 34 20 37 26
9 7 2 100 2 150 69.00 364.2 86.48 88.12 94.14 100.0 16 9 39 6
10 20 2 100 3 100 66.40 374.0 84.73 88.79 89.86 100.0 4 39 93 58
11 12 2 100 3 100 66.40 389.7 85.49 86.72 90.10 100.0 67 5 39 68
12 6 2 100 2 100 66.40 401.3 84.92 85.85 90.88 100.0 86 4 35 51

Average 85.15 88.08 91.14 100.0

Table 2: Results on the instances of set Tai25

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 19 3 750 6 750 64.28 497.2 73.46 94.59 95.65 100.0 0 120 71 8
2 13 3 750 5 750 81.25 672.0 80.07 93.41 95.12 100.0 0 111 39 6
3 6 3 750 5 750 65.08 691.6 81.15 91.43 92.98 100.0 20 62 32 10
4 19 4 850 5 850 84.77 444.4 90.19 94.59 95.25 100.0 6 45 41 339
5 13 4 850 6 850 88.91 512.1 72.64 96.11 96.57 100.0 3 68 47 18
6 6 3 850 7 850 94.24 689.1 66.99 75.40 77.56 100.0 166 44 37 281
7 19 2 600 5 600 63.45 406.1 77.05 84.00 84.60 100.0 3 65 98 1197
8 13 2 600 5 600 64.05 413.4 78.47 84.57 85.98 100.0 82 32 56 49
9 5 2 600 5 600 63.98 402.3 83.32 87.44 90.28 100.0 44 21 10 20
10 19 3 850 5 850 75.34 706.9 83.98 94.28 97.80 100.0 0 91 66 7
11 13 2 850 5 850 80.00 738.9 73.78 90.37 91.54 100.0 6 59 46 117
12 5 3 850 5 850 61.32 820.3 71.05 83.67 87.93 94.43 276 51 28 tl

Average 77.68 89.16 90.94 99.54

12



Table 3: Results on the instances of set Chao30

Chao30 : Type A instances

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 2 100 3 100 97.00 386.9 84.20 88.89 89.37 100.0 34 34 91 1128
2 15 2 100 3 100 96.60 408.8 82.36 85.05 86.30 100.0 171 29 53 1219
3 7 2 100 3 100 96.20 421.8 84.33 85.88 88.78 100.0 27 10 44 46
4 23 2 100 4 100 95.67 402.9 86.95 89.43 91.10 100.0 7 41 77 253
5 15 2 100 4 100 98.50 460.2 81.30 83.30 85.20 97.44 115 25 48 tl
6 8 2 100 4 100 99.33 512.1 78.00 79.65 81.14 94.39 128 24 25 tl
7 22 2 100 2 150 86.40 385.4 87.56 90.30 91.46 100.0 6 39 84 48
8 15 1 150 2 150 92.67 389.6 87.35 89.71 90.82 100.0 13 21 64 14
9 8 2 100 2 150 87.00 444.1 84.84 87.15 94.05 100.0 60 9 52 7

10 22 2 100 3 100 81.00 432.5 82.43 86.87 87.33 100.0 146 38 73 1097
11 15 2 100 3 100 82.20 410.4 85.11 87.95 89.62 100.0 38 18 37 200
12 8 2 100 3 100 80.00 451.2 86.65 87.36 89.28 100.0 31 6 19 449

Average 85.18 87.86 89.81 99.32

Chao30 : Type B instances

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 2 150 2 150 80.83 374.5 82.74 86.48 88.30 100.0 165 25 91 524
2 15 2 150 2 150 80.50 379.9 83.70 85.95 88.41 100.0 237 11 65 581
3 7 2 150 2 150 80.17 387.1 84.72 86.05 93.32 100.0 4 7 28 5
4 23 2 150 2 200 82.00 356.8 88.84 91.47 92.01 100.0 15 28 72 55
5 15 2 150 2 200 84.43 395.0 84.58 86.74 90.95 100.0 17 17 63 30
6 8 2 150 2 200 85.14 417.0 85.86 86.43 96.14 100.0 38 8 27 8
7 22 2 150 2 200 61.71 372.5 87.70 93.25 93.49 100.0 89 36 80 223
8 15 2 150 2 200 59.57 374.7 89.07 91.90 93.67 100.0 3 21 94 21
9 8 2 150 2 200 62.14 387.2 88.33 91.69 98.28 100.0 15 22 33 6
10 22 2 150 2 200 57.86 377.4 89.59 94.43 94.81 100.0 23 27 49 25
11 15 2 150 2 200 58.71 350.7 93.73 96.82 96.90 100.0 4 30 69 3
12 8 2 150 2 200 57.14 373.1 96.77 98.27 98.79 100.0 6 19 16 4

Average 87.97 90.79 93.76 100.0

Chao30 : Type C instances

Inst. nc Qt qt ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 150 93 356.3 82.96 88.58 88.96 100.0 97 24 121 786
2 15 150 224 371.6 80.80 84.91 85.59 100.0 212 23 72 670
3 7 150 341 386.5 79.71 84.43 86.33 100.0 17 15 29 102
4 23 150 113 351.7 87.66 90.32 90.84 100.0 7 11 59 321
5 15 150 276 383.8 81.96 88.57 89.89 100.0 31 21 52 131
6 8 150 422 435.8 75.19 77.35 83.02 100.0 37 11 20 196
7 22 200 128 365.1 85.78 91.31 91.41 100.0 34 36 119 214
8 15 100 217 419.5 77.11 84.97 85.48 100.0 8 20 75 106
9 8 200 326 408.0 82.00 86.63 91.81 100.0 19 13 36 16

10 22 100 93 411.5 80.72 85.18 85.46 100.0 109 19 117 1394
11 15 100 187 398.8 81.88 85.37 86.14 100.0 49 17 76 112
12 8 100 317 471.8 77.17 79.19 83.23 100.0 24 11 48 258

Average 81.08 85.57 87.34 100.0
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Table 4: Results on the instances of set Tai30

Tai30 : Type A instances

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 3 750 6 750 90.16 743.3 75.71 89.25 91.02 97.03 0 24 87 tl
2 15 3 750 5 750 87.30 830.6 74.80 95.27 95.63 100.0 0 23 41 19
3 8 3 750 5 750 87.65 875.2 73.64 92.84 94.11 100.0 3 15 60 22
4 23 4 850 5 850 92.82 536.4 83.41 89.49 90.89 100.0 27 11 28 5467
5 15 4 850 6 850 91.86 526.0 75.78 95.71 97.38 100.0 10 21 72 72
6 8 3 850 8 850 93.93 806.7 68.53 71.71 80.65 100.0 36 11 42 6985
7 23 3 600 5 600 89.58 678.4 79.43 84.95 85.87 93.40 3 36 70 tl
8 15 3 600 5 600 89.58 699.1 81.25 85.52 86.38 97.60 19 20 68 tl
9 7 3 600 7 600 71.67 699.1 82.53 85.47 86.47 96.72 153 13 28 tl
10 23 3 850 5 850 91.66 743.1 88.85 97.85 99.39 100.0 1 19 105 70
11 15 2 850 5 850 92.32 788.3 77.79 91.42 94.33 100.0 9 17 64 498
12 7 3 850 5 850 91.32 939.4 73.98 84.03 89.72 94.67 212 11 69 tl

Average 78.83 90.16 91.93 98.13

Tai30 : Type B instances

Inst. nc mc Qc mt Qt %q ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 3 1000 6 1000 67.62 566.5 85.49 98.40 98.77 100.0 10 85 81 4
2 15 3 1000 5 1000 65.48 638.9 82.96 91.94 93.39 100.0 10 72 51 11
3 8 3 1000 5 1000 65.74 655.5 82.70 89.94 91.51 100.0 0 27 53 6
4 23 4 1000 5 1000 78.90 467.2 84.60 89.72 91.36 100.0 3 62 45 1758
5 15 4 1000 6 1000 78.08 511.2 69.48 96.93 97.42 100.0 16 93 57 263
6 8 3 1000 8 1000 79.84 679.2 70.75 77.89 81.64 96.83 394 50 59 tl
7 23 3 900 5 900 59.72 544.0 81.20 94.98 95.29 100.0 0 67 124 77
8 15 3 900 5 900 59.72 568.2 82.45 92.74 93.61 100.0 63 32 51 23
9 7 3 900 7 900 47.78 568.7 83.56 92.93 94.64 100.0 2 17 26 13

10 23 3 1000 5 1000 77.91 729.2 82.16 94.45 95.80 100.0 0 61 58 4133
11 15 2 1000 5 1000 78.47 761.0 69.96 85.53 86.80 97.13 19 39 67 tl
12 7 3 1000 5 1000 77.63 815.1 75.02 86.75 89.60 99.14 32 68 52 tl

Average 80.26 92.21 93.47 99.66

Tai30 : Type C instances

Inst. nc Qt qt ub %lb0 %lb+ %lbc %lb∗ scc rcc cci t

1 23 750 1549 508.9 71.89 97.53 98.48 100.0 0 47 72 2
2 15 750 2288 711.3 65.02 94.04 95.48 100.0 6 39 48 5
3 8 750 3036 757.4 62.29 89.86 91.08 100.0 14 34 47 4
4 23 850 1867 310.6 59.52 71.70 73.14 100.0 10 45 55 3716
5 15 850 2478 333.9 61.87 95.82 97.84 100.0 0 88 24 1
6 8 850 4779 359.1 66.11 97.75 99.36 100.0 0 61 15 0
7 23 600 262 491.1 62.98 97.28 97.76 100.0 0 51 58 4
8 15 600 916 538.5 60.85 90.18 93.14 100.0 10 33 63 4
9 7 600 1358 585.4 57.58 88.82 90.99 100.0 80 36 22 15

10 23 850 1369 608.8 66.01 88.85 98.11 100.0 2 46 55 2
11 15 850 2986 667.6 62.69 87.51 97.14 100.0 13 41 49 29
12 7 850 4953 719.1 64.32 90.25 97.02 100.0 9 81 69 4

Average 63.43 90.80 94.13 100.0
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